
IJSRSET511806 | IRCT18 | March-April-2018 [(5)1 : 24-31]

 National Conference on 'Innovative Research on Robotics, Circuits and Technology' (IRCT 2018)

Organized By : CIrcuit Branches of SCSVMV, (EEE, ECE, EIE & Mechatronics) , Kanchipuram, Tamil Nadu, India

In Assotiation with International Journal of Scientific Research in Science, Engineering and Technology

© 2018 IJSRSET | Volume 5 | Issue 1 | | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

24

Analysis Prefetching Mechanism for VM Snapshot Deduplication

Metadata in Cloud Storage
 G. Poornima

Assistant Professor, Department Of. ECE, SCSVMV, Kanchipuram, Tamil Nadu, India

ABSTRACT

Cloud computing enables hardware and software resources to be accessed over the Internet. IaaS is one of the

cloud services which offers computing power on demand by providing virtual machines to the consumers. As

the number of users increase, IaaS cloud generates more number of VM images and snapshots. Hence, it is

necessary to optimally utilize the storage space of IaaS to improve the performance. A well-known

deduplication technique is used for efficient utilization of storage space. Since, the metadata generated is huge

with the deduplication technique, it can only be maintained in the hard disk. Hence, prefetching a suitable

subset of metadata is essential to improve I/O throughput. Thus, the objective of this paper is to compare the

effectiveness of the similarity and locality indexing mechanisms with a common set of performance metrics to

suggest a better indexing mechanism for IaaS cloud.

Keywords: Cloud storage, Deduplication, Storage optimization, Prefetching, Indexing mechanisms

I. INTRODUCTION

Cloud computing is a model that enables the

consumers to access a shared pool of configurable

computing resources over the Internet. It has several

advantages that includes high availability, reliability,

ease of management, disaster recovery and flexibility.

Infrastructure as a Service (IaaS) is one of the cloud

services that provides virtualized computing resources

for the consumers to utilize. Due to the advantages of

cloud computing, the adoption rate of IaaS consumers

increases largely [15]. It has resulted in explosion of

the number of virtual machine (VM) images and

snapshots. While VM images create virtual machines,

their corresponding VM snapshots preserve the state

and data at a specific point in time. There may be

different VM images related to different operating

systems utilized by the consumers. Similarly, there

may be several VM snapshots representing different

states of virtual machines. As these VM images and

VM snapshots are larger in size varying from several

MBs to GBs, they occupy considerable amount of

storage space.

In order to effectively utilize the storage space, it is

necessary to identify and eliminate the redundant

data among the various VM snapshots. A well-known

optimization technique, namely, deduplication is

helpful in eliminating the redundant data. It attempts

to store only one instance of the data in the storage.

The redundant data is substituted with a reference to

the existing one in the storage. Though this technique

saves storage space, the associated metadata overhead

is huge. The metadata includes Fingerprint Index and

File Recipe which are utilized to detect duplicates and

to retrieve the files respectively. As this metadata is

huge, it is typically saved in the hard disk. However,

the challenge with inline deduplication of VM

snapshot is to reduce the high latency due to the cost

involved in accessing the metadata from the hard

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 25

disk. There are several indexing mechanisms that are

available to prefetch a set of metadata entries into the

RAM.Consequently, it becomes important to identify

a better suited indexing mechanism for VM snapshot

deduplication. Currently, these mechanisms have

been analyzed individually by utilizing the

performance metrics, namely, deduplication

throughput and efficiency. However, the

effectiveness of the prefetched set of metadata entries

can be well estimated by the amount of space utilized

in RAM and time taken to detect duplicates. Hence,

the objective of this paper is to analyze the

performance of the similarity and locality indexing

mechanisms using a common set of evaluation

metrics, namely, RAM footprint, duplicate detection

time, deduplication throughput and space savings.

A. Contributions

The main contribution of this paper is to analyze the

performance of similarity and locality indexing

mechanisms for VM snapshot deduplication and to

suggest a better suited indexing mechanism for IaaS

cloud.

B. Paper Organization

The remainder of this paper is organized as follows.

Section 2 reviews the related works in applying

deduplication for VM snapshots. Section 3 describes

the design of the performance evaluation system.

Section 4 deals with the system implementation and

Section 5 deals with the detailed performance

analysis. Section 6 concludes the paper.

II. RELATED WORKS

Many research works have been proposed for

prefetching the metadata into the RAM [7-13], as it is

an important and challenging task in deduplication.

The pattern of the VM images is analyzed in the

following two works. Jin et al. [6] have studied both

the inter and intra similarity of various VM images. It

is found from the experimental results that the VM

images of same operating system or the versions of

operating system are considered to have more

duplicate blocks than the VM images of different

operating system. Jayaram et al. [5] have performed

an empirical analysis on 525 VM images of a public

cloud storage. Both fixed and variable size chunking

of various block sizes (4 KB, 8 KB, 16 KB, 32 KB and

64 KB) are applied on the VM images and it is seen

that both the chunking mechanisms yield the same

deduplication ratio. If the inter similarity among VM

images is higher, more number of duplicates can be

expected.

The Three Level Index (3LI) [1] is used to prefetch a

suitable subset of fingerprints based upon the prefix

from the disk. The fingerprints are organized in the

hard disk in the form of several Hash node Tables

(HTs). Each HT consists of fingerprint entries based

on a certain prefix. The prefix of the fingerprint can

be obtained by a 3LI which is maintained in the

RAM. During the write operation, first, second and

third 8 bits of any incoming fingerprint is compared

against the entries present in the first, second and

third level indices respectively using a comparator. If

the prefixes are found, subset level will be checked.

Otherwise, the new value is updated in the index. If

the first 24 bit entry of the fingerprint matches in the

3LI, the corresponding HT is prefetched from the disk

to RAM to detect duplicates. The motivation behind

the 3LI is not clear.

In Two Level Index [2], the existing VM snapshots

available in the disk are partitioned into 128 MB

block groups. The groups are further divided into 4

KB blocks. The (n+k) bit prefix fingerprint entries

corresponding to every block in a block group and the

block address where the fingerprint resides are

maintained in 2LI. At first level, the first n bit of the

fingerprint and a pointer to the second level is stored.

Subsequently, the second level consists of the next k

bits and the location of the block group. During the

read of VM snapshots, every (n+k) bit prefix of

fingerprint is compared against the 2LI. If the (n+k)

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 26

bit prefix matches the 2LI, the block groups which

have this fingerprint are prefetched into the RAM.

These prefetched block groups help in identifying the

future fingerprints. This speeds up the lookup process

of VM snapshots. The 2LI prefetches more than one

group based on the locality.

III. SYSTEM DESIGN

When deduplication is adopted in the cloud storage, it

incurs the overhead of maintaining metadata, namely,

Fingerprint Index and File Recipe. Since this

metadata is huge, it is typically maintained in the

disk. However, it increases the cost of finding the

duplicates as it involves many disk seeks. Thus, a

suitable indexing mechanism to prefetch the most

relevant set of fingerprints is required to reduce the

write latency for VM snapshots. Hence, the proposed

Performance Evaluation System (PES) compares two

existing indexing mechanisms to find a suitable one

for VM snapshot deduplication. The PES consists of

chunker, similarity detector, locality detector and the

prefetcher as shown in Figure 1.

Figure 1. Design of PES

C. Chunker

The chunker divides every incoming VM snapshot

into a set of fixed or variable sized blocks. Further, a

cryptographic hash algorithm, namely, SHA1 is used

to generate fingerprints corresponding to these

blocks. These fingerprints are the unique identifiers

for those corresponding blocks.

D. Similarity Based Index

The Similarity Detector utilizes Similarity Based

Index (SBI) [3] to prefetch the fingerprints based on

the similarity of files. Every incoming VM snapshot is

divided into the variable sized blocks by using the

variable-size chunking mechanism. Subsequently, the

fingerprints are found for those blocks and the

representative fingerprint is found. The

representative fingerprint is the minimum fingerprint

in a set of fingerprints corresponding to that VM

snapshot. According to Broder’s theorem, if the

minimum fingerprints of two files are equal, the

contents of two files are said to be similar up to 80%.

The SBI consists of two levels as shown in Figure 2.

For every VM snapshot, the first level consists of the

fingerprint corresponding to the whole VM snapshot,

the representative fingerprint and a pointer to the

second level index for every VM snapshot. This

representative fingerprint is helpful in finding the

similar VM snapshots. The second level consists of the

fingerprints corresponding to the similar VM

snapshots.

During write operation, the Similarity Detector

finds the fingerprint for the entire incoming VM

snapshot. If a match is found, then the snapshot is

found to be a duplicate. Otherwise, the snapshot is

divided into a set of variable sized blocks. Further, the

representative fingerprint of an incoming VM

snapshot is compared against the first level. If it

matches, then the incoming VM snapshot is similar.

Hence, the fingerprints of VM snapshot are compared

against the second level. Further, if the fingerprints

are present in the second level index, then the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 27

reference counts are updated. Otherwise, the entries

are inserted into the second level index.

Figure 2. Similarity Based Index

E. Locality Based Index

In Locality Based Index (LBI) [4], every incoming VM

snapshot is divided into a set of variable sized blocks.

The fingerprints of these blocks are saved in the same

order of arrival in the fpstore as shown in Figure 3.

The fpstore and the blocks are maintained in a

container. During the read operation of VM

snapshots, when a fingerprint is matched in the

fpstore of a container, the entire fpstore of the

container is prefetched from the disk to RAM to

match the future fingerprints by using Locality

detector.

Figure 3. Locality Based Index

IV. SYSTEM IMPLEMENTATION

This section discusses the implementation and dataset

used to construct SBI and LBI.

F. Implementation

The experimentation of the PES is performed on Intel

Core i7 2.93 GHz machine with 8 GB RAM on Cent

64-bit operating system. To improve the precision of

PES evaluation, each test is run three times under the

same experimental settings.

In SBI, the fingerprint of the entire VM snapshot,

representa -tive fingerprint and the location of the

second level index are maintained as an in-memory

HashMap. The representative fingerprint of the

incoming VM snapshots is found and checked against

the first in-memory HashMap table using

containsKey() method of HashMap class. If a match is

found, then the entire set of fingerprints

corresponding to the incoming VM snapshot are

compared against the second level in-memory

HashMap table using containsKey() method of

HashMap class.

In LBI, the fingerprints of every incoming VM

snapshot are placed in a text file by processing

according to the order of arrival. The text file

represents the fpstore. Further, the text file and the

corresponding blocks are stored in a folder which

represents the container. When an initial fingerprint

of the incoming VM snapshot matches the first

fingerprint of the container, then the fpstore of the

corresponding container is prefetched into the RAM.

The fingerprints of the incoming VM snapshot are

compared against the prefetched fingerprints using

containsKey() method of HashMap class for

deduplication. If a match is not found, then the

fingerprints of the incoming snapshot are saved into a

new container.

G. Dataset

The dataset for PES is a set of VM snapshots collected

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 28

from VMware cloud data center [14] as shown in

Table 1. This dataset consists of VM snapshots of most

popular operating systems, namely, Debian, Fedora,

Mint, OpenSUSE and Ubuntu. This dataset is utilized

for analyzing the performance of both indexing

mechanisms.

Table 1. VM snapshots dataset

OS Type No. of Snap- Size (in MB)

 shots

Debian 10 28.25

Fedora 30 84.9

Mint 20 48.5

OpenSUSE 15 54.25

Ubuntu 50 86.1

Total 125 302.25

V. RESULTS AND DISCUSSION

This section deals with the detailed performance

analysis of SBI and LBI mechanisms by utilizing a

common set of evaluation metrics.

H. Metrics for evaluvation

The indexing mechanisms, namely, SBI and LBI have

been compared using a set of common metrics,

namely, RAM footprint, duplicate detection time,

space savings and deduplication throughput.

1) RAM footprint

The fingerprints prefetched from the disk utilize a

considerable amount of RAM memory during

deduplication. The performance of a system depends

on the utilization of the RAM memory.

2) Duplicate detection time

During write operation, the fingerprints of every

incoming VM snapshot are compared with the

prefetched fingerprints in order to find duplicates.

The time taken to perform this operation is the

duplicate detection time. The lower the duplicate

detection time is, the higher will be the performance

of the indexing mechanism

3) Space savings

Space savings refers to the amount of disk space saved

after the application of deduplication. It is measured

by the difference in the size of the snapshot before

and after deduplication. The space saving depends on

the prefetched subset of fingerprints.

4) Deduplication throughput

Deduplication throughput is found to evaluate the

effectiveness of the indexing mechanisms. It

represents the number of blocks written into the disk

per unit time. The higher the deduplication

throughput is, the higher will be the performance of

the indexing mechanism.

I. Analysis of PES

The dataset has been split into two parts, namely,

index building dataset and a deduplicating dataset.

The index building dataset consists of 30 VM

snapshots of size 50 MB. The average size of a VM

snapshot is 10 MB. The deduplicating dataset consists

of 20 VM snapshots of size 25 MB. Experiments have

been conducted to build the indices SBI and LBI by

utilizing the index building dataset. Further, the

deduplicating dataset has been given as input to

analyze the performance of the indexing mechanism.

1) Comparison of indexing schemes for RAM

footprint

The fingerprints prefetched from disk are maintained

at in-memory HashMap table. The RAM utilization is

found by using Runtime class in Java library.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 29

Figure 4. Average RAM footprint

While LBI prefetches the fingerprints of a single

container, SBI prefetches the fingerprints of all

similar VM snapshots. Hence, the average RAM

footprint of the LBI is less when compared to that of

SBI as shown in Figure 4.

2) Comparison of indexing schemes for duplicate

detection time

A Timer startTimer is started immediately after

chunking the snapshots into blocks by using chunker

and endTimer is stopped immediately after duplicate

detection using check(fingerprint). The difference

between the startTimer and endTimer gives the

duplicate detection time in millisecond by using

System.currentTimeMillis() of Java library. In order

to improve the accuracy, it is also measured in

nanosecond, startNanoTimer and endNanoTimer is

calculated by using System.nanoTime() and

System.currentTimeMillis() method of Java library.

Since the considered workload for deduplication is

characterized by the VM snapshot corresponding to

Linux distribution, the inter-similarity was more.

Hence, the probability of the fingerprints of incoming

VM snapshots to get matched with entries in the SBI

is more when compared to LBI as shown in Figure 5.

Figure 5. Average duplicate detection time

3) Comparison of indexing schemes for space savings

Space savings signifies the amount of storage space

used by the snapshot by utilizing the index. The size

of the directory is measured by using

FileUtils.sizeOfDirectory(). The files used for

deduplication is saved in filesUsed directory and the

files are chunked and saved into the chunkDirectory.

The difference between the filesUsed and

chunkDirectory returns the space saving. The number

of duplicates detected for SBI is more when compared

to LBI. Hence, the average space savings of SBI is

higher than LBI as shown in Figure 6.

4) Comparison of indexing schemes for deduplication

throughput

The throughput is measured in terms of number of

blocks written per second by using

DIRECTORYNAME.length(). The throughput has

been found by using sample dataset as shown in Table

1.

The number of fingerprints prefetched from the disk

is maintained as in memory HashMap table. The SBI

prefetches the fingerprints based on the similar VM

snapshots, whereas LBI prefetches the fingerprints

corresponding to a particular snapshot. Due to the

higher inter similarity between the snapshots, the SBI

prefetches more number of blocks when compared

with LBI. Hence, the number of blocks prefetched

from the disk is higher for SBI when compared to

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 30

LBI. The throughput analysis of the indexing

mechanism is shown in Figure 7.

Figure 6. Average space savings

Figure 7. Average deduplication throughput

VI. CONCLUSION

The existing indexing mechanisms, SBI and LBI have

been implemented. The index building dataset of size

50 MB has been utilized to build the indices. Further,

the deduplicating dataset of size 25 MB has been

given as the input to perform deduplication. During

deduplication, the average RAM footprint consumed,

the time involved for detecting duplicates, space

occupied for storing the deduplicating dataset and the

numbers of blocks written per second for each

indexing mechanism have been found. From the

experimental investigation, it is found that the RAM

footprint, duplicate detection time and the

throughput of SBI are 15%, 20% and 90% more and

space savings is 5% less when compared to that of

LBI.

VII. REFERENCES

[1]. J. Wang, Z. Zhao, Z. Xu, H. Zhang, L. Li and Y.

Guo, I-sieve: An inline high performance

deduplication system used in cloud storage, In

Proceedings of IEEE International Symposium

on Tsinghua Science and Technology, 2015,

pp.17-27.

[2]. C. H. Ng, M. Ma, T. Y. Wong, P. P. Lee and J.

Lui, Live deduplication storage of virtual

machine images in an open-source cloud, In

Proceedings of 12th International Middleware

Conference, International Federation for

Information Processing, 2011, pp. 80-99.

[3]. D. Bhagwat, K. Eshghi, D. D. Long and M.

Lillibridge, Extreme binning: Scalable, parallel

deduplication for chunk-based file backup, In

Proceedings of Modeling, Analysis and

Simulation of Computer and

Telecommunication Systems, IEEE, 2009, pp. 1-

9.

[4]. B. Zhu, K. Li and R. H. Patterson, Avoiding the

Disk Bottleneck in the Data Domain

Deduplication File System, In Proceedings of

File And Storage Technologies, 2008, Vol. 8, pp.

1-14.

[5]. K. R. Jayaram, C. Peng, Z. Zhang, M. Kim, H.

Chen and H. Lei, An empirical analysis of

similarity in virtual machine images, In

Proceedings of Middleware Industry Track

Workshop, 2011, pp.1-6.

[6]. K. Jin and E. L. Miller, The effectiveness of

deduplication on virtual machine disk images,

In Proceedings of Israeli Experimental Systems

Conference, 2009, pp.1-7.

[7]. J. Xu, W. Zhang, S. Ye, J. Wei, and T. Huang, A

lightweight virtual machine image

deduplication backup approach in cloud

environment in proceedings of Computer

Software and Applications Conference

(COMPSAC), IEEE,2014, pp. 503-508.

[8]. W. Zhang, H. Tang, H. Jiang, T. Yang, X. Li, and

Y. Zeng, Multi-level selective deduplication for

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

 31

vm snapshots in cloud storage in proceedings of

Cloud Computing (CLOUD), 2012, pp. 550-557.

[9]. T. T. Thwel and N. L. Thein, An efficient

indexing mechanism for data deduplication in

proceedings of Current Trends in Information

Technology (CTIT) International Conference,

2009, pp. 1-5.

[10]. Zhao, X., Zhang, Y., Wu, Y., Chen, K., Jiang, J.

and Li, K., Liquid: A scalable deduplication file

system for virtual machine images. Parallel and

Distributed Systems, 2014, pp.1257-1266.

[11]. Zhang, W., Agun, D., Yang, T., Wolski, R. and

Tang, H., VM-centric snapshot deduplication

for cloud data backup in proceedings of Mass

Storage Systems and Technologies, 2015, pp. 1-

12.

[12]. Campello, D., Crespo, C., Verma, A.,

Rangaswami, R. and Jayachandran, P., Coriolis:

Scalable VM Clustering in Clouds in

proceedings of ICAC, 2013, pp. 101-105.

[13]. Debnath, B.K., Sengupta, S. and Li, J.,

ChunkStash: Speeding Up Inline Storage

Deduplication Using Flash Memory in

proceedings of USENIX annual technical

conference, 2010.

[14]. http://www.trendsigma.net/vmware/

[15]. http://www.rightscale.com/blog/cloud-

industry-insights/iaas-vs-paas-2015-cloud-

trends-state-cloud-survey

